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The entropy layer on a blunt-nosed cone is analyzed, in view of the 

difficulties it produces in numerical computations. A rule is given to 

determine at what distance from the nose the entropy layer is a given 

fraction of the shock layer, for a given free stream Mach number. 

A simple and very efficient way of computing flows with strong 

entropy layer effects is given.  It consists of inserting two stream- 

lines representing loci of rapid changes in entropy derivatives, and 

forbidding differentiation across such lines. 
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I.  INTRODUCTION 

Strong entropy gradients tend to appear near the surface of a 

vehicle flying at a supersonic speed.  The vorticity in the affected 

region is very high.  Vortical layers are produced by either one of two 

different and independent effects, or by a combination of both; 

a) If the vehicle has a pointed nose and flies at an angle of 

attack, the streamlines proceeding from the shock wave run very close to 

their original meridional plane until, at a small distance from the body, 

they turn towards the leeward symmetry plane, piling up in increasing 

number on a layer of decreasing thickness.  A cross-section of the flow 

shows the projections of the stream-lines converging to a point on the 

leeward plane, called Ferri's vortical singularity.  Each streamline 

carries a constant value of entropy.  By and large, the entropy behind 

the shock wave diminishes from the windward to the leeward symmetry 

plane.  Thoroforo, in a thin layer on the leeward side of the body, the 

entropy decreases in a radial direction from the body surface outwards. 

In an inviscid flow, such a vortical layer becomes vanishingly thir at 

the vortical singularity. 

L) If the vehicle has a blunted nose and flies at no incidence, the 

bow r lock starts as a normal shock on the symmetry line an^ bends towards 

the free stream characteristic cone.  By and large the entropy behind 

the bow shock decreases with increasing distance of the shock point from 

the body axis.  Streamlines from the frontal portion of the bow shock 

remain confined within a small distance from the body through all its 

length since more and more mass flow is swallowed through the receding 

shock wave.  Such streamlines define a layer across which the entropy 

varies from its normal shock value to practically its free stream value, 

and which is strongly vortical.  Its thickness, relative to the shock 

layer thickness, decreases with increasing distance from the nose. 



almost conical pattern. With increasing distances from the nose, the 

shock tends to become the conical shock related to a pointed cone with 

its apex at Q (the interisection of the symmetry axis with the conical 

section of the body). The entrojy behind the shock reaches a minimum at 

a point L, which can be located approximately at the intersection of the 

tangent to the shock at F with the conical shoclc, QG.  The mass flow 

through the shock between A and L is squeezed between the body, DB and 

the streamline, LE issuing from L. At any section, BG of the shock layer, 

the total mass flow equals the mass flow through the entire shock, AG. 

For the present evaluation, we assume that th3 vertical layer is defined 

by BE (whose thickness, in terms of nose radii, is 5) and that the flow 

across EG is conical. Let b and d be the cone thickness, GE and the 

shock layer thickness, BG, respectively at the same station. Giver a 

value of 6/d, we want to evaluate at what station, H, such a value occurs. 

In the flow about a pointed cone, the distributions of density (c) 

and axial velocity (w) at a given station are qualitatively shown in 

Fig. 2 (solid lines) . We assume that in the entropy layer (BE) density 

i-fc r 

w„ 

*»•. 

4-^ r 
B   E 

Fig.   2    Approximate Distributions of Density and Axial 
Velocity Across Shock Layers. 



Hayes and Probstein call it the "entropy wake". A more popular name is 

"entropy layer". 

Here we intend to discuss the problem posed by an entropy layer in 

a numerical analysis. 

II.  ESTIMATE OF THE THICKNESS OF THE ENTROPY WAKE 

Ai crude, but significant, estimate of the thickness of the entropy 

layer relative to the shock layer thickness when the first is at least 

one order of magnitude smaller than the latt#S can be obtained as follows: 

Consider Fig. 1, which shows a section of s sphere-cone vehicle, ND being 

the spherical and DB the conical portion. The sphere controls the shape 

of the bow shock between A and F, the latter being ^he shock point on the 

characteristic issuing from D, After F, the shock wave evolves into an 

Fig. 1 Blunt-Nosed Cone Shock Layer. 



almost conical pattern. With increasing distances from the nose, the 

shock tends to become the conical shock related to a pointed cone with 

its apex at Q (the intersection of the symmetry axis with the conical 

section of the body). The entroiy behind the shock reaches a minimum at 

a point L, which can be located approximately at the intersection of the 

tangent to the shock at F with the conical shock, QG,  The mass flow 

through the shock between A and L is squeezed between the body, DB and 

the streamline, LE issuing from L. At any section, BG of the shock layer, 

the total mass flow equals the mass flow through the entire shock, AG. 

For the present evaluation, we assume that the vortical layer is defined 

by BE (whose thickness, in terms of nose radii, is 5) and that the flow 

across EG is conical. Let b and d be the cone thickness, GE and the 

shock layer thickness, BG, respectively at the same station.  Given a 

value of 5/d, we want to evaluate at what station, H, such a value occurs. 

In the flow about ^ pointed cone, the distributions of density (p) 

and axial velocity (w) at a given station are qualitatively shown in 

Fig. 2 (solid lines). We assume that in the entropy layer (BE) density 

w 

u*.   r 
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WL 
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Fig. 2 Approximate Distributions of Density and Axial 
Velocity Across Shock Layers. 



and axial velocity have the qualitative behavior shown in Fig. 2 by 

dotted lines.  In particular, we assume that p and w can be approximated 

by linear functions 

c = cB + (cc-pB)y  ,  w = wB + (wc-wB)y (1) 

where 

y = ^^ (2) 

.- and w are the pointed cone values and p^w- are the actual values of 
c     c       r PB B 

density and axial velocity at the body surface, respectively.  The values 

of « and w_ can be evaluated as follows: We assume that the flow about 

the pointed cone with the same cone semi-angle e, and the same free stream 

Mach number, M^, as in the blunted case, is known.  In particular, we 

know the shock angle, ., and the values of pressure, density and velocity 

at the cone surface (denoted by a subscript, c, in what follows).  The 

stagnation pressure at B is the same as at A behind the shock, 

v 1 

POB " ( 2 A*>' L 2vM?-(v-l)J   P» ^ 

The static pressure, p_ at B is assumed to be equal to the conical flow 

pressure at B, p .  The local Mach number, M0 at B follows: 
C D 

Po ^ 

The local speed of sound, an at B is given by 

aB = ao d + ^M- )^  ■ (5) 

where a  is the stagnation speed of sound in the free stream. 

Consequently, 

PB = ypB/Ra^ (6) 



und 

wD   MDnBcos- (7) 

The mass flow, m between li  and E is thus obtainable from 

.1 
rr, t  2-  ' cw(b + 5y)dy (H) 

' 0 

with p and w defined by (1).  Note that, at this stage, neither b nor ', 

have been determined yet. 

Now, mr can be computed d.s 

^ = "fV.M^r* (9) 

From (8) and (9) 

follows.  Since 

d   tan' [il1 

we know r /d as a function of /d.  To get d, once '/d has been 
Li 

proscribed, r  must be detornuncd.  At this stage, we make use of an 
Li 

2 
existing blunt body computational program coupled with a computation 

of the supersonic flow by the method of characteristics to determine r 

for a sphere as a function of M^ and the location of point D (that is, 

as a function of r.) *     Finally, b is obtained from (11) and the value of 

z (measured from the center of the nose in terms of nose radii) is 

z = f±^ > _4- (12) 
tan ■   sine 

as a function of M, and ■-. 

Results of the computation are shown in Figs. 3 and 4 for '/d 0.1 

and • /d- 0.05, respectively. The results .ire almost independent of the 

free stream Mach number. 
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It is clear from the figures that, if the cone angle is no!: very 

small, vorticity tends to concentrate in a narrow layer at relatively 

short distances (10, 20 nose radii) from the nose.  Catastrophic effects 

may result in a numerical computation , unless proper steps are taken. 

III.  PRELIMINARIES FOR THE NUMERICAL ANALYSIS 

We now draft a numerical analysis of the steady, axisymmetric, 

inviscid, supersonic flow about a sphere-*cone configuration, obviously 

not to repeat a computational exercise which has been performed an 

endless number of times in the last decade, but with a specific goal in 

mind. The analysis should be for us a guideline to generate a computer 

program for three-dimensional flows, apt to work economically and safely 

for very long bodies, particularly when the entropy layer becomes very 

thin. The results of Section II show that such is the case when the 

body slope is high, even at relatively short distances from the body 

nose. 

The method of characteristics is ruled out because it is unsuitable 

for three-dimensional problems. We choose a technique which, in 

principle, is patterned on the same general methods we used in a great 

variety of problems.  The computation proceeds stepwise from a cross- 

section, normal to the z-axis of symmetry, to another normal cross-section, 

their distance, „z, being defined to comply with the Courant-Friedrichs- 

Lewy rule , A fixed number of nodal points is considered, at all cross- 

sections, between body and shock. The first point lies on the body, the 

last on the shock; all other points (interior points) are in the shock 

# 
Let us keep in  mind that in a typical hypersonic transport configuration, 
the fuselage runs for 125 nose radii before the wing-body junction.  In 
what follows, we will see that the crmputation may actually degenerate 
at about 20 nose radii. The most affected quantity is the Mach number 
which can become less than 1 in spots, bringing the computation to a 
halt. 



layer.   The nodes are not necessarily equally spaced in the physical 

(r,z) plane. However, a transformation of coordinates is used to 

generate a computational (X,Z) plane in which the distance between shock 

and body is normalized and the nodes are equally spaced in the X-direction, 

The Z coordinate is simply taken equal to z. 

4 
In principle , three different integration schemes should be used 

for interior points, body points, and shock points, respectively.  The 

equations of motion to be integrated at interior points are 

uP ^ wP +,(u +w +— ) = 0 r    z    r z r 

uu + wu + .7P = 0 r    z    r 

(13) 
uw + ww + ,7P =0 r    z    z 

uS  + wS  =0 r     z 

where 

u,w are the velocity components in the r,2 directions, respectively 

P is the logarithm of the pressure 
* 

•/ is the ratio between pressure and density, and S is the entropy. 

With the transformation 

X = X(r,z) 
(14) 

Z = z 

the following equation in matrix form is obtained! 

fz = Afx + B (15) 

All quantities are made non-dimensional.  Pressure and densities are 
scaled to their values, p^ and c,.» in the free stream.  Velocities are 
scaled to (p /r )^. Lengths are scaled to the nose radius.  The 
non-dimensional "^entropy is the difference of P and v times the logarithm 
of density. Temperatures are also expressed in terms of the free stream 
temperature, so that _£ is the non-dimensional temperature.  The speed 
of sound, a, equals .. . in the free stream and -.7,7 at any other point. 



f = 

-E 
DXr 
-;7x /w o 
o     o 

YBXj 
-E 

-CXj 
GXr 

0   ] r - /Bw/r 
0 
0 ,      B = 

vD/r 
0 

-F- -0 

(16) 

with 

.-. = l/(w8-as) , B = ^u, C=\Lw,   D = B,7 
(17) 

E = X  + BwXr, F = X  + -X , G = .'a8 

A two-level, predictor-corrector integration scheme suggested by 

MacCormack and discussed in Ref. 4 is applied to (15). 

To obtain an equation for P, at body and shock points, we observe 

first that the first three equations obtainable from (15) combine into 

two characteristic equations: 

with 

±apW-ywp-r'  +  ^_^ u(±Kiw_u) = o 

.- = vM'-l 

(18) 

(19) 

In (18), primes mean derivatives with respect to z^ evaluated along the 

characteristics, defined by 

dx — 
•'. = 5z = X + :uwxr + ^aa3Xr 

respectively. At a body point, (18) can be written in the form: 

(20) 

p = ...p + ![}£ ,. -g- ..- -^u(-w-u)],  =XT[; (uw-a
5?i)--j    (21) 

Z      X   " a    X T 

since T
_ = 0, X„ = -rX^ on the cone surfaceo 

Equation (21) is integrated using a two-level, predictor-corrector 

scheme similar to the one used for (15); however, the X-dorivatives 

are approximated by one-sided differences at both levels.  In the present 

problem, P is the only quantity to be determined by direct integration 

at a body point.  Once P is obtained, .7 is immediately available from 

-1 7 = expf ^ P + £. (22) 

since S is ccr^tant along the body.  Then the modulus of the velocity. 



q is obtained from the equation expressing the conservation of total 

enthalpy, 

q? = ^T (^o " •7) (23) 

and the two velocity components follow: 

w = q cos --:,  u = q sm e (24) 

At a shock point, (18) is used in conjunction with the Rankine- 

Hugoniot conditions: 

P = -m 
2 vM^  -(v-1) n00 

v+ 1 

(Y-l)M»  + 2 

n" 
(25) 

SHOCK 

»- z 

where 

Fig. 5 Velocity Components at a Shock Point. 

Mn^ = M^sin.-. = M^j/v, a = tarn, v = (l+o^)' (26) 

CCl CO 
(27) 

see Fig. 5.  Since X=constant along the shock, the Rankine-Hugoniot 

conditions can be differentiated with respect to Z, yielding 
4YMr, MÄ      C n^ *     z 
2vM* -(v-1)  v (28) 

10 



"z = Vj ^ - (v+l)Mg  1 i (29) 
n00 

In addition, 

u = (wa-u)/v   ,   ^ = ^n, = (w+ua)/v 

(30) 
u - (CTV-U)/V   ,   w = (cu+v)/v 

so that 

a 
uz = (w+ua)^ + (w o-u )/v = v^lc /v")-: (wz

?-uz)/v     (31) 

By replacing (28), (29) and (31) into (18), the following equation for 

z    is obtained: 
Z 

A (.- 7 P +wu  -uw  )   +   .lua2 (u+wß) /r 
-   =   \j& XXX /^0^ 
VZ  v   „^^ ., . -.r2   Y-l. . p  s,  ~  .v-1   2Yva   . ~ 

-2=7 (Vv)/^ - ^-(u +w
s).+vVa)(X_ - (./+1)^vT)4uV3_r 

= Xrri(uw+a80) - 7] (33) 

Equation (32) is again integrated by a predictor-corrector scheme, whose 

first level yields 

C = c(Z) + Oz(Z)..Z  ,  c = c(Z) + ?5['''Z)4-?]/.z      (34) 

(c being the r-coordinate of the shock) and whose second level yields 

\     C{Z+LZ) = hiciz) +~+\LZ2 
Z (35) 

c(Z+^Z) = H[c{Z) + c+H{cz+az) kz 

All values used in the right-hand side of (32) to obtain r    are values 

obtained at the end of the predictor step. 

The computation of body points and shock points described above uses 

the concept of characteristics to provide the best possible equations for 

determining P on the body and a    on the shock, without requiring 

iterations.  Its code is easily inserted into the same predictor-corrector 

double loop used for interior points. Therefore, it provides the same 

advantages as the computation based on a direct use of characteristics, 

11 



5 first proposed by one of the authors , but it does not require special 

subroutines, iterations, interpolations, and it saves computational time. 

The idea has been suggested by Kentzer  for a first order accurate scheme, 

but, to our knowledge, so far it has not been exploited to its full 

capacity.  This is what we intend to do by incorporating it into a 

predictor-corrector scheme, as outlined above, in order zo  achieve higher 

accuracy and maintain a logical consistency with the interior point 

computation. See also Refs. 7 and 8 for further details and comparisons 

with other methods. 

A careful treatment of the boundary conditions (that is,a choice of 

equations which emphasize the role played by the vanishing of the normal 

velocity component on a rigid wall, by the Rankine-Hugoniot conditions 

at the shock and the propagation of signals along the characteristics, 

together with the elimination of all equations which contain some element 

not directly relatable to the boundary conditions) is a major factor of 
9 

success .  One may be tempted to substitute the body point treatment 

described above by an integration scheme, similar to the one uaed at 

interior points^ where at both (predictor and corrector) levels the 

x-derivatives are approximated by one-sided differences from the interior 

of the flow field. Accordingly, one could try to introduce the conditions 

of vanishing normal velocity component by combining the two equations for 

u and w in order to provide a single equation for the tangential 

component; this is easy to do because of the simple geometry of the cone. 

We can avoid him the trouble. We have repeated all the runs described 

below using the latter scheme and we have found a definitive worsening 

of the computed values in all cases.  Pressure is a particularly sensitive 

parameter and the use of (21) is imperative, particulary when one is 

concerned with reducing the number of computational nodes to a minimum. 

Initial conditions will be specified along a straight line, normal 

12 



to thfc z-axis, issuing from the contact point between the sphere and 

cone. 

All examples given in the following discussion have been computed 

for a 25° sphere-cone at a free stream Mach number equal to 10.6. 

IV.  FIRST COMPUTATION WITH EQUALLY SPACED NODES 

We begin by applying the numerical technique outlined in Section III 

to a mesh with a constant number of nodes, equally spaced between shock 

and body.  Equation (14) is thus specified as 

X = £% (36) 
c-b 

Z = z 

where b and c are the r-coordinates of body and shock, respectively. 

With n intervals between body and shock, ix = 1/n. Runs made for 

n=10,20 and 30 degenerate rapidly. At a first sight, it appears that 

the results improve with increasing number of nodes. However, reasons 

of economy (particularly in view of extensions to three-dimensional 

problems) force n to be limited to a maximum of 20, and it would be 

desirable not to exceed n=10. 

To get a better insight into the degenerative process, we plot 

some entropy distributions at constant values of z for n=10,20 and 30 

(Figs. 6,7 and 8, respectively). 

In all cases, the qualitative behavior of the entropy distributions 

is good at small values of z. The entropy minimum moves towards the 

body. However, the minimum value itself decreases,in contrast with the 

constancy of entropy along streamlines. Further on, an accumulation of 

truncation errors, due to an evident lack of resolution, produces 

oscillations in the entropy distribution, which obviously have no physical 

13 
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Fig. 6. Entropy Distribution Across Shock 
Layer at Different Distances from 
the Nose; n-10 

Fig. 7. Entropy Distribution Across Shock 
Layer at Different Distances from 
Lhe Nose; n=20 

14 



Fig. 8 Entropy Distribution Across Shock Layer at Different 
Distances From the Nose? n = 30. 

meaning.  The pressure (well controlled by the shock and body boundary 

conditions) and, consequently, the streamline slope are little affected. 

The Mach number, which depends on entropy through the speed of sound, 

becomes erratic. 

The efficiency of the technique, according to the above mentioned 

standards, is to be considered poor, at the most. 

V.  SECOND COMPUTATION WITH STRETCHING OF COORDINATES 

High truncation errors appear in regions where S  is very high. 

Obviously, if X is a linear function or r, as in (36), S  is high when 
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S  is high. By stretching the node distribution so that equally spaced 

nodes in the computational plane correspond to unevenly spaced nodes in 

the physical space, with accumulation of nodes in the regions of highest 

Sxxf t'ie corresPonding values of Sx can be kept sufficiently small. 

Stretching is useful to maintain accuracy without increasing the total 

number of nodes to non-eccnomical figures. However, stretching has its 

shortcomings. The X(r,z) function must be analytical, so that itself 

and its first derivatives are defined exactly at each node. Otherwise, 

the truncation errors which are reduced in the differentiations with 

respect to X grow bigger in the differentiation of X with respect to r 

and z.  To define analytically a function X(r,z) which concentrates nodal 

points near the line of minimum entropy and without leaving other regions 

of the shock layer bcire of nodes, is not an easy task. We were able to 

define a suitable stretching function and to choose its parameters to 

satisfy our needs in the sample case. However, it seems to us that the 

choice of parameters cannot be made a permanent, automatic, safe feature 

of a program intended to deal with arbitrary geometries in a wide range 

of Mach numbers.  Therefore, we discarded the stretching concept as 

impractical. 

VI.  THIRD COMPUTATION WITH TWO COMPUTATIONAL REGICNS 

The next attempt towards increased efficiency makes use of a 

concept, stemming from our experiences in shock calculations; wherever 

a function to be computed undergoes too rapid changes, better results 

are obtained by replacing the latter by discontinuities. Let us see how 

the concept can be put to work in the present problem. 

Figure 9 (upper part) shows a qualitatively correct entropy 

distribution across the shock layer in the vicinity of the point of 

minimum entropy.  The lower part of Fig. 9 shows the corresponding 
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Fig. 9 Entropy and Its Radial Derivative Across a Shock Layer 
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qualitative behavior of S .  The arc AB in the S,. distribution is not r r 

exactly vertical; that is, S is not discontinuous. However, for 

practical numerical calculations, it seems convenient to approximate 

AB by a discontinuity, so that in the physical space we may look for a 

line along which S  can jump, S being continuous across it.  Such a line 

is not a contact discontinuity, but, according to well-known principles, 

must be a streamline. 

Consequently, we modified the program used in Section IV as follows: 

As the point of minimum entropy on the shock is detected, the corresponding 

streamline is used as a divider between two segments of the r-axis.  In 

each segment, the r-coordinate is normalized in a way similar to (36) . 

The nodes are equally spaced in each segment, but the spacing is 

different from one segment to the other. The number of nodes in each 

segment is determined following the same general outline described in 

Ref. 10. The region between the dividing line and the shock is first 

covered by 3 nodes.  The number of nodes is automatically increased as 

the region grows bigger.  In the region between the body and the dividing 

line the number of nodes is initially the same as in the original single 

region, and then is decreased automatically, as the region narrows.  Two 

points are located on the dividing line, at both sides of it. The values 

of any physical quantity are the same on either side of the dividing 

line. The derivatives are approximated by one-sided finite differences 

computed on one side of the line at the predictor step and on the other 

side at the corrector step. The entropy is not calculated, but kept 

constant along the line, whose location is obtained by integrating the 

equation: 

— = - (37) dz  w {*" 

The results are very satisfactory. Mot more than 20 nodes are 

needed to get the entropy distribution shown in Fig, 10,  The entropy 
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Fig. 10 Entropy Distribution Across Shock Layer at Different 
Distances From the Nose; Two Region Calculation. 

minimum is properly carried along a streamline; no signs of 

deterioration appear except at a stage where the entropy layer thickness 

is already so small to justify neglection. The inner region is then 

eliminated and the body point is given the values of the first pointy 

P1 next to the dividing line on the outer side.  Physically^ this amounts 

to neglecting the effects of a very thin layer of hot and rarefied gas 

on the remaining flow,  The procedure is obviously  justified, because 

the neglected layer carries very little momentum, when compared with the 

rest of the shock layer.  Numerically, the computation may proceed 

indefinitely and uneventfully. 
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VII.  FOURTH COMPUTATION, WITH A FLOATING MINIMUM ENTROPY LINE 

For axisymmetric problems, the two region approach outlined in 

Section VI could be the optimum one.  Probably not so for three-dimen- 

sional problems.  The logic and bookkeeping of the program could become 

too complicated. 

The two region analysis, though, proved that the most sensible point 

in the entropy wake lies where the entropy gets its minimum value and 

that such a point should be treated explicitly.  If we turn back to the 

concept of a single region with equally spaced points, as in Section IV, 

we can think of inserting an extra point moving along the minimum entropy 

line, which would thus move among the computational nodes and should be 

computed explicitly. 

Fig. 11 shows four nodes surrounding the point of minimum entropy, A. 

A 

Fig. 11 Nodes Around a Point of Minimum Entropy. 

At all nodes, P is computed as described in Section IV since the P-dis- 

tribution is very smooth.  At A, P is interpolated linearly from the 

neighboring points; so is the velocity slope, which is a direct conse- 

quence of the pressure distribution, and therefore smooth; S is kept 

constant.  Temperature, speed of sound. Mach number and modulus of 

velocity at A follow.  The flow is thus completely known at A.  To compute 
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the right-side derivative at n or the left-side derivative at n+1 for S, 

u and w, the values at A and n, or at n+1 and A are used, respectively, 

if the distance between A and n (or n+1 and A) is larger than 1/10 of the 

mesh interval; otherwise, the values at n (or n+1) are interpolated from 

the values at A and n-1 (or n+2), at the same (predictor or corrector) 

level.  The latter device is the simplest way to avoid erratic values of 

the derivatives if the denominators become too small.  Occasional viola- 

3 
tions of the Courant-Friedrichs-Lewy rule  are harmless. 

The results are shown in Figs. 12 and 13 for the cases of 10 and 20 

intervals,respectively.  The entropy distribution is definitively much 

better than in the corresponding runs described in Section IV (compare 

line 19 of Fig. 12 with line 17 of Fig. 6 and line 19 of Fig. 13 with 

line 17 of Fig. 7).  It seems that the device is sufficient to maintain 

the errors in entropy within safe limits, without lengthening the computa- 

tion and complicating the logic. 

VIII.  FINAL COMPUTATION - CONCLUSIONS 

The improvement brought in by the explicit tracking of the line of 

minimum entropy at practically zero  cost suggested a further improvement 

of the same nature, in order to eliminate the remaining wiggles of Figs. 

12 and 13.  Such wiggles are evidently due to the fact that the curvature 

of the entropy distribution is also high around point C (Fig. 9).  A 

second streamline is tracked from the shock, starting at the first point 

where S approaches its asymptotic value (to within a given tolerance) . 

The treatment of the second special point is the same as described in 

Section VII for point A.  The results are sho-/n in Fig. 14 for the case 
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Fig. 12.  Entropy Distribution Across Shock 
Layer at Different Distances from 
the Nose; Explicit Fit of the Point 
of Minimum Entropy; n=10 

2.5r 

-x 

Fig. 13, Entropy Distribution Across Shock 
Layer at Different Distances from 
the Nose; Explicit Fit of the Point 
of Minimum  Entropy; n=20 
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of 10 initial intervals.  The improvement is now complete. 

Fig. 14 Entropy Distribution Across _.iOck Layer at Different 
Distances From the Nose; Explicit Fit of Two Lines of 
Constant Entropy? n=10. 

It is clear that, by using the device of tracking two streamlines, 

the entire shock layer can be computeo to any distance from the body nose 

with only 10 intervals across, with a very simple code (equally spaced 

nodes), provided that shock and body points are carefully treated as 

explained in Section III. 

It may be added that the stations at which the computed entropy layer 

thickness becomes 0.1 or 0.05 of the shock layer thickness agree very well 

with the predictions shown in Figs. 3 and 4. 
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